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Theoretical model for the performance
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A new performance metric, the two-dimensional (2D) contrast threshold surface, is proposed to charac-
terize the systematic performance of a multi-spectral imaging sensor. Specifically, how to measure this
performance metric is presented based on the discriminations of a set of sine-wave test patterns with dif-
ferent radiance magnitudes and spectral properties. The theoretical model for predicting the 2D contrast
threshold surface is derived based on an analytical description of the effective contrast between the test
pattern and its background, in which the impacts of fusion algorithms on the 2D contrast threshold surface
are also discussed using the minimum threshold match criteria. Preliminary simulation results show that
this model can be used to quantitatively characterize the real influence of the spectral differences and
spatial frequencies on the contrast thresholds required for the observer to just resolve the images of the
test patterns through a multi-spectral imaging sensor.
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Over the past decades, multi-spectral imaging sensors
have experienced rapid development. Basically, multi-
spectral imaging sensors have two or more channels that
are sensitive in different spectral regions, which promise
significant improvements in the target acquisition (TA)
performance. With this type of imaging sensor, targets
may be distinguished from their backgrounds not only on
the basis of differences in radiation magnitude in the sen-
sor’s spectral range differences (as the case with single-
band imaging sensors), but also on differences in spectral
properties. However, current existing end-to-end sensor
performance measures, such as the minimum resolvable
temperature difference (MRTD)[1] or the minimum re-
solvable contrast (MRC), the minimum temperature dif-
ference perceived (MTDP)[2], the triangle orientation dis-
crimination (TOD) threshold laboratory test[3−5], and
NVThermIP[6] model, produce threshold curves of res-
olution versus the thermal or luminance contrast and do
not take the spectral difference into account. To over-
come the shortcoming of current performance methods
for characterizing a multi-spectral imaging sensor, some
researchers have made attempts. Piet et al. proposed
an extension to the current TOD test methods, which
yields a two-dimensional (2D) TOD surface of the res-
olution, contrast, and spectral difference between a tri-
angle test pattern and its background[7]. But no further
effort was made to study its theoretical model due to
the complex analytical description of the triangle pat-
tern. Another research perspective is to quantitatively
assess multi-spectral image quality by introducing some
figure of merits, such as analysts’ interpretation of quality
and utility[8], spectral similarity[9], and spectral quality
equation[10]. However, these metrics are only appropriate
for the detection task of an unresolved object, not con-
sidering the target recognition and identification tasks of
an extended source target. To compare two competing
multi-spectral imaging sensors, or to quantify the antic-
ipated benefits of a multi-spectral imaging sensor above

a single-band imaging system, we propose a 2D con-
trast threshold surface for characterizing a multi-spectral
imaging sensor, and derive its theoretical model based
on the perceptual property of the human visual system
(HVS). Moreover, the impacts of image fusion algorithms
on this performance metric are investigated. Simulation
results show that this performance theoretical model can
correctly predict the quantitative trade-off relationship
among the spectral differences, the radiance differences,
and the spatial frequencies for particular TA task.

For a single-band imaging sensor based on human vi-
sion, the widely used performance metrics such as MRTD
or MRC are generally measured through a blackbody
source or a single color for the test pattern and back-
ground, which can be closely related to the TA perfor-
mance through John criteria[11]. However, the perfor-
mance metrics similar to MRTD or MRC have not been
studied for multi-spectral imaging sensors based on hu-
man vision. Different from single-band imaging sensors,
the TA performance is not only due to the spatial size and
luminance contrast of the target, but also dependent on
the spectral difference between the target and its back-
grounds in certain scenarios (for TA purposes, e.g., trees,
grass, concrete, low emissive paint, camouflage nets).
Therefore, how to correctly configure the spectral differ-
ences, radiance differences, and spatial frequencies of the
test patterns and its backgrounds is the prerequisite to
measure the systematic performance metrics related to
its TA performance. On the other hand, the fused gray
images from different channels are eventually observed
by the HVS. The contrast sensitivity function of HVS di-
rectly determines the required contrast threshold for the
observer to discriminate the test pattern images through
a multi-spectral imaging sensor. Moreover, the experi-
mental study of the contrast sensitivity function of HVS
is generally based on a set of sine-wave patterns from
the perception perspective[12]. Hence, to measure the
proposed performance metric, we choose multiple sets of
sine-wave patterns with adjustable radiance differences,
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spectral differences, and different spatial frequencies as
the test patterns. Specific procedures are given as fol-
lows.

1) It is first assumed that a multi-spectral imaging sen-
sor is generally used in a certain field background with
a luminance of LB and a spectral reflectivity of ρB (λ).
The maximum spectral reflectivity of real target sensed
in this natural scene is supposed to be ρT (λ).

2) To measure the performance metric related to the
TA performance, the test pattern background is config-
ured to be the same as the field background in the lumi-
nance and spectral reflectivity, also expressed by LB and
ρB (λ), respectively. The luminance of the test pattern is
represented by LT.

3) Considering the relevant combinations of different
type of real targets and field backgrounds in natural
scene, we define the reflectivity of the test pattern as

ρBar (λ) = α (ρT (λ)− ρB (λ)) + ρB (λ) , (1)

where α is the spectral difference coefficient, which is
an additional variable. If α=1, the test pattern spectral
properties equal those of the selected target. If α=0, the
spectral reflectivities of the test pattern and background
are equal, yielding a test very similar to the standard
performance test for a single-band imaging sensor. Now,
instead of varying the test pattern size and luminance
only, also the spectral reflectivity of the test pattern can
be varied in the performance metric measurement.

4) The luminance and reflectivity of the test pattern
background is kept constant. We suppose that the im-
ages from different spectral channels are displayed in
gray. The measurement procedure similar to MRC is
adopted. The correct fraction of the HVS as a function
of test pattern contrast for a range of test pattern spatial
frequencies and a range of values of α. If possible, we de-
termine the contrast threshold at 50% correct response
probability. If, for certain spatial frequency and α, the
correct fraction does not fall below 50%, the test pattern
can be detected on the basis of reflectivity difference and
contrast being equal to zero.

5) Finally, construct a perceptual 2D contrast thresh-
old surface in the three-dimensional (3D) space with the
spatial frequency, contrast, and α as ordinates.

According to the above descriptions, we know that
this perceptual 2D contrast threshold surface is obtained
based on the perceptual properties of the HVS to the
gray images of a set of test sine-wave patterns through a
multi-spectral imaging sensor. Hence, it is necessary to
combine the optical properties of sine-wave test patterns,
their transfer properties through a multi-spectral imag-
ing sensor, and the contrast sensitivity of the HVS to
establish a theoretical model for predicting the new per-
formance metric. Considering the test patterns being the
input signal of a multi-spectral imaging sensor, we need
to start with a mathematical description of the test pat-
tern. Note that the optical properties of the test patterns
are adjusted by changing the luminance and the spectral
reflectivity of the test pattern and its background. Then,
the effective contrast of the test pattern and its back-
ground can be expressed as

Ceff =
ρBar (λ)LT − ρB (λ) LB

ρBar (λ)LT + ρB (λ) LB
. (2)

Substituting Eq. (1) into Eq. (2), we can get

Ceff =
[α (ρT (λ)− ρB (λ)) + ρB (λ)] LT − ρB (λ)LB

[α (ρT (λ)− ρB (λ)) + ρB (λ)] LT + ρB (λ)LB
.

(3)
Equation (3) is further expressed as
Ceff =
[α (ρT (λ)− ρB (λ)) + ρB (λ)] (LB + ∆L)− ρB (λ)LB

[α (ρT (λ)− ρB (λ)) + ρB (λ)] (LB + ∆L) + ρB (λ)LB
,

(4)
where ∆L is the difference between the test pattern lu-
minance LT and its background luminance LB. With
both the numerator and denominator in the right part of
Eq. (4) being divided by LB, we can obtain

Ceff =
[α (ρT (λ)− ρB (λ)) + ρB (λ)] (1 + C)− ρB (λ)
[α (ρT (λ)− ρB (λ)) + ρB (λ)] (1 + C) + ρB (λ)

,

(5)
where C is the ratio of ∆L to LB, representing the con-
trollable luminance contrast of the test pattern and its
background in the performance measurement procedure.

Now, we need to consider the transfer properties
through each imaging channel of the sine-wave test pat-
tern. According to the linear system theory, the contrast
of the output image of the sine-wave patterns thought
each imaging channel is written as

Cn
out−eff = Ceff ·Hn

sys (ξ) , (6)

where Hn
sys (ξ) is the system modulation transfer func-

tion (MTF) of the nth imaging channel (including optics,
detector, and display MTFs). Since the perceptual 2D
contrast threshold surface is defined as the input optical
properties required for the HVS to just resolve the images
of the test pattern, we need to further obtain the percep-
tual contrast of the HVS to the test pattern images. Ad-
ditionally, noise characteristic also has significant effects
on the perceptual contrast of the output image of the test
pattern, which should be taken into account. Equation
(6) can be then modified as the perceptual image con-
trast considering the perceived properties of the HVS to
the test pattern images including noise[13]:

Cn
perceptual = Cn

out−eff/

(
1 +

κ2PSDn ·Qn
h (ξ) Qn

v

L2

)1/2

,

(7)
where κ is the calibration constant; PSDn represents the
detector noise power spectral density of the nth imag-
ing channel in units of fL2·s·mrad2; Qn

h is the horizontal
noise bandwidth of the nth imaging channel[13], which is
related to post-filter MTFs from electronics, display, and
the eye and the bandpass properties of the HVS; Qn

v is the
vertical noise bandwidth of the nth imaging channel[13],
which is related to post-filter MTFs from electronics, dis-
play, and the eye; L is the display luminance in fL.

For an observer to just be able to resolve an input
test pattern, the output contrast modulation in Eq. (7)
should be equal to or higher than the contrast modula-
tion threshold of the human visual system. Barten estab-
lished a theoretical model CTFeye(ξ)of contrast threshold
function corresponding to 50% correct response proba-
bility of the observer by using the experimental data col-
lected by psychophysicists[12]. To achieve the 2D contrast
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threshold surface, we set the perceptual image contrast
of the test pattern, Cn

perceptual, to be equal to the contrast
threshold function CTFeye (ξ) of the human eye, and con-
sider the conversion of the unit of the spatial frequency
from the image space to the visual space. We can get

Cn
perceptual = CTFeye (ξ/m) , (8)

where m is the angular magnification factor of each imag-
ing channel.

Combining Eqs. (5)–(8), we can get the input contrast
thresholds required for the observer just being able to
discriminate the test pattern images after some conver-
sions:

CTn
input =

CTFn
sys (ξ) [α (ρT (λ)− ρB (λ)) + 2ρB (λ)]− α (ρT (λ)− ρB (λ))(

1− CTFn
sys (ξ)

)
[α (ρT (λ)− ρB (λ)) + ρB (λ)]

,

where

CTFn
sys(ξ) =

CTFeye(ξ/m)
Hn

sys(ξ)
·
(

1 +
κ2PSDn ·Qn

h(ξ)Qn
v

L2

)1/2

. (9)

From Eq. (9), it can be seen that this contrast threshold
is a 2D function of the spectral difference coefficient and
spatial frequency.

It is known that the main purpose of fusion algorithms
is to extract complementary image information and com-
bine similar image information from each channel, and
then form the optimum image information for the ob-
server. Here, the contribution of fusion algorithms to the
integral performance is taken as an optimum threshold
matched filter, i.e.,

CTfusion = min
{
CT1

input, CT2
input, · · · , CTn

input, · · · , CTN
input

}
, (10)

where CT1
input, CT2

input,· · · , CTN
input are the input con-

trast thresholds required corresponding to various imag-
ing channels included in a multi-spectral imaging sensor,
respectively. In principle, Eq. (10) can provide the opti-
mum thresholds through a comparison of different imag-
ing channel thresholds corresponding to the same spatial
frequency and spectral difference, which can objectively
reflect the action of fusion algorithms.

Next, we use the performance theoretical model to
perform a simulation focusing on a multi-spectral imag-
ing sensor with three spectral imaging channels. It is
assumed that the total MTFs (including optics, detec-
tor, and display MTFs) of three imaging channels are,
respectively,

H1
sys (ξ) = e−0.07ξ2

, H2
sys (ξ) = e−0.09ξ2

,

H3
sys (ξ) = e−0.05ξ2

, (11)

where ξ is the spatial frequency in cycle/mrad. The cor-
responding post-filter MTFs are, respectively,

H1
post (ξ) = e−0.035ξ2

, H2
post (ξ) = e−0.05ξ2

,

H3
post (ξ) = e−0.025ξ2

. (12)

We suppose that their signal-to-noise ratios (SNRs) for
the average pixel are 8:1, 10:1, and 12:1, respectively.
The PSD is the square of the root-mean-square (RMS)
noise for 1 s and 1 mrad in each dimension. All of these

three display signal luminances are 5 fL. Their system
magnification factors are the same, equal to 10.

Based on the above parameters, the simulated re-
sults are obtained, as shown in Figs. 1–4. Figures 1–3
show the contrast threshold surfaces of three different
spectral imaging channels, respectively. Each contrast
threshold surface is affected by both the spatial fre-
quency and the spectral difference of the test pattern
and its background. As the spatial frequency increases,
the required contrast thresholds become larger gradually
for the observer to just resolve the test pattern with
particular spectral difference. The contrast threshold
values are relatively smaller for larger spectral difference
coefficients. We also find that the needed contrast thresh-
olds are higher for the target patterns of lower spatial
frequencies compared with those of medium spatial fre-
quencies, which is due to the inhibitory signal processing

Fig. 1. Contrast threshold surface for channel 1.

Fig. 2. Contrast threshold surface for channel 2.
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Fig. 3. Contrast threshold surface for channel 3.

Fig. 4. Contrast threshold surface for a multi-spectral imag-
ing sensor.

of the HVS. On the other hand, it can be seen that some
values of contrast thresholds are negative, which means
that the luminance values of the needed test pattern
are possibly lower than that of its background when the
spectral reflectivity of the test pattern is much larger
than that of its background. Summarily, the interrela-
tionships of these three physical factors are consistent to
the sensing phenomenon of a multi-spectral imaging sen-
sor in real TA task, which means that the same trade-off
relationship among the spectral difference, contrast, and
spatial frequency of real target and field background ex-
ists for particular TA task. Although they show the same
change trend, these threshold surfaces also have signif-
icant differences in the contrast threshold range due to
the differences of channel design parameters. Figure 4
shows the most sensitive contrast threshold surface of a
multi-spectral imaging sensor after fusion of the above
three imaging channels, which can reflect the comple-
mentary information of each channel and form the most
optimum threshold surface required to discriminate the
test pattern. This point is consistent with the conclusion

drawn in Ref. [7].
In conclusion, a 2D contrast threshold surface for

evaluating the systematic performance of a multi-spectral
imaging sensor is proposed. How to define the spectral
property of the test pattern is deeply discussed for mea-
suring the 2D contrast threshold surface. The theoretical
model of the 2D contrast threshold surface is derived on
the basis of the perceptual property of the HVS, in which
the contributions of fusion algorithms are quantitatively
described. Simulation results show that this model can
not only be related to imaging properties of each chan-
nel included in a multi-spectral imaging sensor, but also
combine the improvement of fusion algorithms to the
total performance. This performance metric may be a
promise method to optimize the design parameters of a
multi-spectral imaging sensor and for fusion algorithm
developments from the system-level performance per-
spective. In the near future, we will explore to predict
the TA task performance of multi-spectral imaging sen-
sors based on this theoretical model.
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